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INTRODUCTION

Traditionally all of dosimetry has been based on the
measurement or calculation of the average energy depos-

ited in a small volume expressed originally by the
Roentgen, a unit of exposure for x and v-rays, and more

recently and of wider applicability by the absorbed dose
expressed in Rods. Both are macroscopic concepts since

they presume a sufficient number of ionizing events so

that statistical fluctuations of energy loss by charged

particles (primary or secondary) may be ignored. In the
case of very small volumes such as those of importance in

radloblology and where most effects are considered to be

due to a very small number of events taking place in this
volume the probability of transferring an amount of

energy equal to or nearly equal to the average energy
loss computed from the charged particle stopping power
in most instances is very small. The energy transferred

to any particular biological entity is given by a frequency
distribution function which in many cases is skewed

toward high energy events and therefore the most probable
energy loss is considerably less than the average. This is
of fundamental importance in predicting radiation damage
to the individual cells, chromosomes, molecules, etc.

whose cumulative effect we observe. Generally, then,
the absorbed dose would only be applicable as a measure

of energy delivered when large numbers of individual
events are pertinent such as might be found in large masses

of material or where the effect observed is due to many
events.

In most instances where biological material is being

studied, the individual transfers of energy from incident
particles to atomic electrons are subject to wide statis-
tical fluctuations 1-3 In these cases, the usual concept

upon which doslmetry is based (average energy loss or
stopping power of charged particles) breaks down, except

for the most densely ionizing particles. This is always
the case when one considers volumes as small as those

associated with the various biological structures of interest

in fundamental radioblology, radiation therapy, and
health physics.

As a consequence in almost all cases, energy deposition
in the biological volumes involved have a wide separation

of the most probable and average energy losses. This
state usually exists for most of the radiations currently of

interest. Only in the case of very densely ionizing
particles such as heavy ions can these considerations be
neglected.

There are multiple reasons why this approach has

persisted. First, physical determinations of statistical
distributions of energy loss have been restricted to path-
lengths large compared to those of biological interest and

second, many have been examined using instruments which

accumulated data over many pathlengths simultaneously

thereby masking fundamental physical phenomena. Over
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the past few years, the work of Baily and his collabor-
ators 4-6 has shown the importance of such considerations

for high energy protons (_ 45 MeV).

FUNDAMENTAL CONCEPTS

Despite certain discrepancies between experiment and
theory which have been found for energy loss distributions

due to single charged particle traversals through small
volumes, a rather good representation of the experimental

data is given by the theory for those energy losses occur-

ring at and about the most probable value. The discrep-
ancies appear as an excess of high energy events with a

subsequent dearth of events lying below that of the most
probable energy loss. The average energy loss obtained
from theory and experiment show agreement within

experimental error. Since the discrepancies mentioned

are not large (_ 20% excess of high energy events),
calculations made using the Blunck-Lelsegang corrected

Vavilov or Landau theories are sufficiently accurate to
examine current dosimetry and radioblological concepts

in the light of these distributions. Major among these are:
a) Linear Energy Transfer (LET) and its role in predicting

Relative Biological Effectiveness (RBE) or b) the reliability
of the use of the average energy deposited to describe the
local microscopic dose for a small number of events. As

we shall show, the energy range over which these broad
distribution functions is important is fairly extensive for

most charged particles. Even Compton electrons generated

at conventional x-ray energies and protons generated in
tissue by fast neutrons fall within the group of particles to

which these statistical concepts and associated physical
phenomena apply.

Perhaps, in a qualitative way, the extent of the statis-

tical fluctuations are best illustrated by an examination of

the distribution functions of the frequency with which
energy losses of a given magnitude take place in a given

pathlength. Fig. 1 shows such frequency distributions for

various charged particles corresponding to a pathlength of
approximately 1 /_ of tissue. The degree of the statistical
fluctuations are well illustrated by the four particles chosen.

Curve A is that expected from a 50 keV electron; B from a

50 MeV proton; C from an 8 MeV alpha particle; and D
from a 24 MeV stripped 12C ion. The spread about the

most probable energy loss is also given. This is expressed

by the full width at half maximum (FWHM) as a percentage
of the most probable energy loss. The ratio of the average
to the most probable energy losses for the two lighter classes
of particles is given in Tables I and II. These two values

will coincide for very densely ionizing particles.

A number of things important to the production of radio-
biological effects take place as particle charge and mass

increase and similarly with decrease of particle energy.

First, as shown for a heavy charged particle of energy
2 MeV/amu, the distribution function has a gaussian shape

and is narrowly distributed about the average energy loss

(-'_]_. Second, as charge and mass decrease, the

FWHM increases, but its shape is still primarily gausslan.
The peak or most probable energy loss coincides with the

average energy loss. Third, as the magnitude of the energy
loss decreases relative to the particle's kinetic energy, the
curve becomes quite skewed on the high energy end. As a
consequence as this trend continues skewness increases and
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TABLE I

A comparison of average energy Joss versus most probable enGrg-/ Iols for protons

traversin 0 1 micron of soft tissue (muscle).

TABLE II

A comparhon of average energy lo_s versus most probable energy Jos_ For

IJec_roni traversing 1 micron of soft til._ue (muscle).

I EP (MeV)
_, Average Energy Loss (KeV) _,np, Most Probable

Energy Loss (KeV)

1.0 27.1

2.0 16,9

5.0 8.26

I0.0 4.64

50 1.26

100 0.736

150 0.549

600 0. 257

27.0 1.00

15.7 1.08

6.31 1.31

3.11 1.49

0.669 1.88

0.360 2.04

0.258 2.13

0.109 2.35

Electron Energy (MeV) _, Averoge Energy Loss (l<eV) Z_rnp, Most Probable
Energy Loss (KeV)

0.05

0.1

0.2

0.4

0.6

0.8

h0

2.0

4.0

6.0

8.0

10.0

0.667

0.415

0.281

0.216

0.196

0.189

0.185

0.184

0,189

0.193

0.196

0,198

0.367

0.210

0.133

0.0981

0.0886

0.0848

0.0832

0.0824

0.0843

0.0855

0.0863

0.0868

1.82

1.98

2.11

2.20

2.22
2.22

2.23

2.23

2.24

2.25

2.27

2.28

the most probable energy loss becomes increasingly less

then the average. Since the ratio of these can become
quite large, this is of great significance in dealing

with fundamental radioblological (and therefore the
ultimate overall) effects involving single or only a small
number of interactions.

A measure of this physical phenomena and its possible

consequences for dosimetry can best be appreciated by
noting the ratio of the average energy loss to the most

probable. Tables I and II give this ratio for protons and
electrons respectively over a wide range of energies for

particles traversing distances approximately equal to
1 /4 of tissue. It should be pointed out that this ratio,

in most cases, would be even larger if shorter path-
lengths were involved.

The combination of the size of the tJmblologlcal

meterial and the patterrt of energy deposition which is

due purely to the physics involved, prompts one to
m-examine the use of macroscopic dosimetry units such
m the rad asking if it is really suitable for use as a

biological measure of radiation effects. Indeed if an
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adjustment of this unit were to be made representative
of the actual probability for delivering a specified

amount of energy to a small volume, we might even
appear to question some of the attributes usually

associated with parameters such as LET, rate effects, etc.
While we do not mean to suggest fhat a more proper

parameter would be based on one simple number such as
the most probable energy loss, we do feel that a more
careful consideration of fundamental physical phenomena

should be given to the associated probabilities for energy
deposition before ascribing certain biological factors to

various types and energies of ionizing radiation since
most biological effects seem to be caused by a relatively
small number of events. The requirement for having

only a small number of significant events as indicated
by the magnitude of the exttapolatlon numbers combined
with the small volumes involved when considered in

light of the energy deposition frequency distributions

gives a high probability for many types of radiation to
deliver a total effective dose considerably less than

that to be expected from the macroscopic (tad) dose.
The magnltude of the discrepancy will, of course,

depend on the type radiation and its energy.



CONSIDERATIONS INVOLVING R.B.E.

A consideration of the actual energy likely to be

absorbed in a biological structure as compared to that

ordinarily specified by the absorbed dose leads one to

question the validity of many values of R•B. E• reported
or even to ask the question is the effect real. It is
therefore of interest to examine this problem by assum-

ing some other value of energy absorbed other than that
measured or calculated by macroscopic concepts.

Although an exact treatment would require a rigorous
statistical treatment we have found that a simple

adjustment of the dose gives values in agreement with

those found experimentally by assuming that the most

probable energy loss is more representative than the
average energy loss. Looking at this problem then
from the viewpoint of the initial experiment if the dose
to the small biological volume had been specified by
the actual amount of energy absorbed then many

differences in R. B.E. values attributed to a true

biological effect would not have been found.
To explore this hypothesis, we have assumed that the

ratio of

where: _rnp = the most probable energy loss, and

= the average energy loss

is a measure of the effective dose delivered to the

individual elements of which the test mater_al is composed
and that the observed effect is the accumulation of

damage to these elements.
The values of the inverse quantity given in the

Tables I and II show a striking parallelism to many

reported _.B.E. values for these radiations. We have
therefore util;zed these in the manner postulated above
to calculate values of the R. B. E. we would have expected

to have been found. This was done by adjusting the dose

ratio from which the t_. B.E. was obtained by the ratio of

the _np/'_ratlos of the test radiation to that of the
standard radiation.

Baarli and Bonet-Maury 7 using 592 MeV protons'found
an R.B.E. of 0.98 for thls radiation when they compared

the dose for obtaining LD50/30 survival of mice to the
dose required for a simil,,rsurvlval level using 250 kVp
x-rays. In other tests, values of 1.06 were found.

Adjusting the magnitude of the dose in each case by the

ratio of Z_,mp/_assumlng a mean electron energy of
100 KeV for the 250 kVp x-ray spectra gives a value of

1.19. Since the frequency distribution of the energy
depositions for 600 MeV protons is a more h_ghly skewed
distribution than would be found for the mixed electron

energy spectra associated with a 250 kVp x-ray generator
the answer obtained is not unreasonable. If one were to

include as highly probable events those close to but

greater than Z_mp, we should improve the agreement.
We have done slmilar comparisons for a group of biological

experiments using various proton energies and fast neutrons.
The results are shown in Table III. While these are

selected references and by no means represent the bulk
of the llterature, no special effort was made to pick

biological data to match that obtained from the physical
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TABLE III

ComparTson of normalized values of the ratio _/_ to some R.B.E. values
reported for LDs0/30 surv;val experiments in m,_e and surv;vaf _d
proliferation of Chinese harr_ter cells.

Proton Energy !M#b0 _rrnd_avi_ _art_cle _/_ _-.B.E.

and E_rgy (normall zacl)

592 MeV Pmt_$ 7 0.?8, 1.06,Mice

(relative to 250 kVp x_ayl)

6O0 1.19

13g MeV Protons8 1.07,Mice 60
(relative to Co)

55 MeV Protons9 1.3 -2.3,M_
(relative to Co)

5O 1.19

Fast _4eutrons 10 2.1B, Chlrm_ kl_stor Cells

(relative to 280 kVp x_ay$)

1.0 1.97

measurements. The correlation with our oversimplified

analysis is striking particularly in view of th_ fact that

_rnp is almost certainly too low a value to be considered
as a single parameter doslmetrlc value.

A similar approacl_lcan be used with the data presented
by Barendsen, et al. for electrons and x-radlatlon.
Assuming an averag-'---eenergy of 700 keV for the beta

spectrum used and an effective energy of 100 KeV for•the
200 kVp x-rays used, we can compare the difference in
biological effects produced with the ratio of _b//_n for
electrons having these energies. The blotogical effects

(R.B.E.'s) showed a dlffel'ence of 12%. The difference
in the energy loss ratios is also 12%.• • _ 12

A recent series of experiments by Cercek, et al.

using 380 MeV protons and 6gCo "y-rays obtaln"edR.B.E.
values of 1.3 - 1.4 for these protons in several biological

materlg]s. Using the data in Table I and that of Wright,
et al. I_ for the fraction of dose delivered by heavy ions

and--_pions, we would obtain a dose ratio (based on Z_mp)

of 1.13. If the narrowing of the frequency distribution
which occurs with very dei_sely ionizing particle,_ was

taken into account agreement would be even closer

(Fig. 1). Many other examples where such agreement
is found could be cited.

Examination of Table II together with the reasoning

suggested would also explain the fact that in many
instances, no significant changes in R.B.E. were found

for k.l:.T.'s as widely different as those associated
with 60Co and 200 kVp x-rays (0.27 I_eV/_ in the case

of 60Co and a mean L.E.T. of 1.8 KeV//_ for a 200

kVp lightly filtered x-ray beam). In fact, with
increases in photon energies up to 22 Mevp, R.B.E.'s
have been found to change by only 10 to 15 per cent.

It should be reaLized_ however, that for any mean-

ingful application of the physical factors that we have

pointed out requires a theory incorporating the
probability for events of a given slze in the volume of



interestcorresponding to the number of events expected

or required for damage or death.
Another aspect of this problem has to do with the

possible requirement for deposition of a minimum amount

of energy in the critical site. In an unpublished paper,
Katz and his collaborators 14 have obtained very good

agreement with published R.B.E. values based on cell
survival curves when values of 5 to 250 KeV are used

as the minimum required value of the energy deposition

in the sensitive site. Frequency distribution functions
automatically provide: first, the fraction of events de-
positing energy greater than a certain energy and second,

the fraction of the total energy deposited in event sizes
greater than a given value. Two typical curves of this

type are shown in Figs. 2 and 3. In addition to furnish-

ing a ready source of information which can be used in
Katz's 14 or similar formulations, the data when presented

in this manner serves to further illustrate the importance

of taking into account possible differences in the values

of _and _mp and the associated changes in probability
for events close to the average energy loss. For example,
the data illustrated in Figs. 2 and 3 represent the

frequency distributions for 46.4 MeV protons passing
through I .33 x 10 -4 g/cm 2 of a tissue-equivalent gas

(equal electron densities). The fraction of the total

energy delivered to the gas by the proton in its passage
through it in event sizes greater than 4(1.56 KeY) is
60%, while the fraction delivered by events having

energy losses greater than _rnp (0.90 KeY) is 88%.
Similarly, Fig. 3 shows that the fraction of events
occurring with energy losses greater than /% is only
35%, while those occurring with losses greater than

Amp is 73%.
This type of data also lends itself to interpretations

of the shape of survival curves in lieu of the simple
concepts of the hit theory. Both shoulder extension and

slope of the expor_enfial portion can be analyzed using
data similar to that shown.

IAJ

_10 -_-.

_W

°i1
o
eel
,_ 0

e%e
%.

%
°•

%e

%.

%..
%

EVENT _ZE

Fractionofeventsdep_it_r_ energy in a_unts greaterthano givensize

--tOE,O--wheoa,_...................33x,0"_o.................

keV

160

_W

z "' _
0

', _J_

_l,d

I.O" °..e

0.5-

OI
0

• ".%%.

"%

"°%

%°

" -...,...........,

EVENT _ZE

F_cti_ of the total e_rgy which is I_t in Fr_iv]d_l e_ntl ,SavFng_y
t_ g_ter than _ glven i_rgy. Thedatu _ exp,_i_nlolly
dtte_ined f_ 46.4 MeV p_tonl Entheir pee4oglthrough 1.33 _ 10"4_/_2
of t_-_qu_lent _her_ol.

Rate effects can a.so oe considered in the same light.

For example, if the critical energy required for recording
of damage corresponds to a low probability event,

recovery should be more probable since the time available
for it would be greater. Low dose effect data should

therefore shed much light on this interesting possibility•

In fact, an obvious consequence, which is, of course,
observed experimentally, is the relatively larger rate
effects found for low L.E.T. radiations. In terms of the

distribution functions, this might be explained by the

relatively lesser fraction of the dose being delivered by
events having large energy depositions in instances where

the critical energy required to produce the effect is

considerably larger than the most probable energy loss.

DISCUSSION

The treatment presented has ignored the fact that

under certain conditions many biological effects studied

yield R.B.E. values considerably in excess of the ratios
tabulated. This definitely shows the naivety of the

approach and the need for considerable refinement or
possibly a total change in concept. Further, one should
not take this presentation as a basis for the elimination
of all real biological differences. It is most likely that

to properly account for the experimental data, a
combination of real biological differences and a correct

and rigorous accounting of energy deposition patterns

are required.
Further, if one considers that frequency distributions

having a high degree of skewness have higher probabil-

ities for large events than do for example a narrow

gaussian, irradiation by a beam having such a distribution
will contribute some events although they might be rare

to an effect having a threshold requirement far above

C'_mpor even _. When compared to a heavily ionizing
particle beam having a narrow gaussian spread at or

above this threshold, we might then flnd very large
values of the R.B.E. The smaller the critical site the

greater the apparent effectiveness of the more densely
ionizing particle would become. Similar considerations

were used by Rossi15 to elucidate the probability of

scoring a hlt within a sensitive volume b_the secondary
electrons produced in irradiations using "'Co gamma rays

and for the secondary protons produced by irradiation
with 1 MeV neutrons.



A further test of these concepts requires a theory

incorporating the probability for a given size energy
deposition in specific biological entities when single
or relatively few events are postulated for production

of an observed biological effect. This statistical
treatment of the individual components would then have

to be averaged over the large number of cells, chromo-

somes, etc. in an attempt to reproduce experimental
survival curves, numbers of breaks, deletions or even

overall effects on whole organs or organ systems.

CONCLUSION

Serious consideration of the physics of energy

deposition seems to indicate that a fundamental change

in the interpretation of absorbed dose is required at
least For considerations of effects in biological systems.
In addition, theoretical approaches to radlobiology and

microdoslmetry would seem to require statistical con-
siderations incorporating frequency distributions of the
magnitude of the event sizes within the volume of interest.

REFERENCES

1. Landau, L.: J. Phys. USSR 8, 201 (1944).
2. Vavilov, P.V." Zh. El<sperlm. i. Teov. Fiz. 32,

320 (1957) English Transl. : Soviet Phys. - JETP'-5,
749 (1957).

3. Blunck, O. and keisegang, S.: Z. Physik 128,
500 (1950).

4. Hilbert, J.W., Baily, N.A., and Lane, R..G.:
Phys. Rev. 168_._.,290 (1968).

5. HiJbert, J.W. and Baily, N.A.: Rad. Res. 39,
1 (1969).

6. Baily, N.A., Steigerwalt, J.E., and Hilbert, J.W"

Phys. Rev. 2B, 577 (1970).

7. Baarli, J. and Bonet-Maury, P.: Nature 20.5,
361 (1965).

8. Dalrymple, G.V., Li_say, I.R., Hall, J.D.,
Mitchell, J.C., Ghidoni, J.J., Kundel, H.L.,

and Morgan, I.L.: Rad. Res. 28,489 (1966).

9. Dalh/mple, G.V., Lindsay, I.R., Ghidoni, J.J.,
Mitchell, J.C., and Morgan, I.L.: Rad. Res. 28,
548 (1966).

10. Schneider, D.O. andWhltmore, G.F.: Rad. Res.

18, 286 (1963).
I1. Barendsen, G.W., Walter, H.M.D., Fowler, J.F.,

and Bewley, D.K.: Rad. Res. 18, 106 (1963).
12. _er_ek, L., Ebert, M., GilberT,', C.W., Haigh,

M.V., Howard, A., Massey, J.B., and Potten,
C.S.: Int. J. Radiat. Biol. 15, 137 (1969).

13. Wright, H.A., Anderson, V.E., Turner, J.E.,

Neufeld, J., Snyder, W.S .: Health Phys. 16,
13 (1969).

14. Katz, R.: Proc. of the IV Int. Congress of Rad.
Res., Evian, France, 114 (1970).

15. Rossl, H.H.: Amer. J. Roentgenol., ROd. Ther.,
and Nuc. Med. 93, 196 (1965).

1

161




